|

SN S

NASA Technical Memorandum 104003 yy S S3 é

p- 27

Scene Segmentation of Natural
Images Using Texture Measures
and Back-Propagation

Banavar Sridhar, Anil Phatak, and Gano Chatter;i

March 1993

NASN

National Aeronautics and
Space Administration

Quick Release — This Technical Memorandum is an unedited
report. It is being released in this format to quickly provide the
research community with important information.

(NASA-TM-104003) SCENE N93-25235
SEGMENTATION OF NATURAL IMAGES

USING TEXTURE MEASURES AND

BACK-PROPAGATION (NASA) 27 p Unclas

G3/59 0158836






NASA Technical Memorandum 104003

Scene Segmentation of Natural
Images Using Texture Measures
and Back-Propagation

Banavar Sridhar, Anil Phatak, and Gano Chatteriji
Ames Research Center, Moffett Field, California

March 1993

NNASN

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 84035-1000






SUMMARY

Knowledge of the three-dimensional world is es-
sential for many guidance and navigation applications.
A sequence of images from an electro-optical sensor
can be processed using optical flow algorithms to pro-
vide a sparse set of ranges as a function of azimuth and
elevation. A natural way to enhance the range map
is by interpolation. However, this should be under-
taken with care since interpolation assumes continuity
of range. The range is continuous in certain parts of
the image and can jump at object boundaries. In such
situations, the ability to detect homogeneous object re-
gions by scene segmentation can be used to determine
regions in the range map that can be enhanced by inter-
polation. This paper explores the use of scalar features
derived from the spatial gray-level dependence matrix
of scalar texture features is done for several images
to select scalar features which result in a meaningful
segmentation of the images. Next, the selected scalar
features are used with a neural net to automate the
segmentation procedure. Back-propagation is used to
train the feed forward neural network. The generaliza-
tion of the network approach to subsequent images in
the sequence is examined. It is shown that the use of
multiple scalar features as input to the neural network
result in a superior segmentation when compared with
a single scalar feature. It is also shown that the scalar
features, which are not useful individually, result in a
good segmentation when used together. The method-
ology is applied to both indoor and outdoor images.

1 INTRODUCTION

Automatic guidance for aerospace vehicles can be
accomplished in two stages. The first stage specifies
a nominal vehicle path based on mission goals and
a database containing digitized terrain geometry. The
second stage specifies a modified path by constructing
a three-dimensional model of the environment near the
vehicle. The model of the environment near the vehicle
is based on locally sensed information. For sensing,
both active and passive sensors can be used.

Traditionally, the problem of ranging, using active
sensors, has been studied extensively (ref. 1). These
algorithms yield dense range maps (ref. 2). It is only

recently that several techniques for ranging, using pas-
sive sensors such as electro-optic sensors, have ap-
peared in the literature (refs. 3-9). It has been shown in
references 3-5 that both stereo and motion algorithms
provide a sparse set of ranges to discrete points in the
image sequence as a function of azimuth and elevation.
The problem of modeling dense range images, gener-
ated by active sensors, has been studied by several
authors (refs. 2 and 10-12). This is usually achieved
by fitting surfaces to the range data using polynomials,
splines, and Delaunay triangles. In reference 12 the
authors have also applied a surface fitting approach
to depth data generated using a field based approach
(ref. 9). The surface consistency constraint smoothes
the depth values into regions where depth is unknown.
From the examples in reference 12, it may be seen
that surface fitting approaches do not work well on
sparse range maps. The main reason for this is that
the geometric relationships between the points of the
range map are lost due to the discreteness of the range
map. One of the ways of recovering this inforration
is by application of problem-dependent constraints to
cluster discrete ranges into few groups (ref. 13). The
techniques for dense range maps may then be applied
to each group to make the variation within the group
continuous. The geometric relationships between the
points may also be recovered by detecting the relation-
ships in the image plane. One such way is to detect
homogeneous regions by scene segmentation.

In the literature several methods have been pro-
posed for scene segmentation. For example, the meth-
ods described in references 2 and 14-24, represent a
few of the diverse approaches to scene segmentation.
Some of these methods use texture features (refs. 19-
24) for scene segmentation.

This paper reviews some of the texture based meth-
ods for scene segmentation and investigates the use of
scalar texture features (ref. 22) for image segmenta-
tion. The selection of an appropriate set of texture
features is the first step in segmentation; and towards
this end, we examine the segmentation capability of
individual features using thresholding techniques. The
thresholding technique, while useful for individual fea-
tures, is difficult to automate for multiple features. We
approach the problem of segmenting the image using
multiple features by training a feed-forward neural net-
work (NN). The NN is trained using the method of
back-propagation. Initially, the NN is trained with a
single feature to ensure that its performance is compa-
rable to that achieved by thresholding. It is shown that



the performance of the NN using several features is su-
perior to the NN using a single feature. We also exam-
ine the capability of the NN to extrapolate by training
it on one image and using it to segment another image.
We present our results by applying them to both indoor
and outdoor images. The NN approach to segmenta-
tion, though not completely satisfactory, shows great
promise. We discuss how the results can be improved
further. The paper is organized as follows: In section 2,
different ways of characterizing the textural properties
are described. In section 3, usefulness of each scalar
feature is explored by evaluation of the segmentation
achieved by thresholding of the histogram of the scalar
feature. Neural network training and classification with
a single scalar feature is described in section 4. Next,
training and classification performance of a five input
neural net using the five scalar features, found to be
useful individually, is presented. Also, in section 4,
results are presented for a five input neural net using
a different set of scalar features. Some conclusions
are drawn in section 5. Each scalar texture feature is
defined in the appendix for completeness.

We thank Hien T. Tran of Analytical Mechanics
Associates, Inc., for implementing the code and gen-
erating the results. We also thank Valerie Conti and
R. Manmatha of the Computer Science Department,
University of Massachusetts at Amherst, for providing
the image in figure 33 and R. E. Suorsa of the Air-
craft Guidance and Navigation branch at NASA Ames
Research Center for providing figure 37.

2 TEXTURE

Gray scale images are characterized by pixels of
varying intensity. Any image can be described by the
nature of the distribution of the gray levels across the
image. The properties of this distribution are usually
described in terms of the first, second, and higher order
statistics. First order statistics describe the pixel popu-
lation in the image without regard to its spatial distri-
bution, while the second order statistics take the spatial
distribution into account. Two approaches are used to
characterize this spatial distribution: (a) a stochastic
model-based approach and (b) a data-driven approach.
The model-based approach assumes that the image can
be modeled in terms of two-dimensional random fields
or time series. Several stochastic models are discussed
in references 25 and 26).

The data-driven, or non-parametric approach, is
based on characterizing the two-dimensional intensity
distribution by different types and features of second
order statistics. The conditional probability density
function f(i, 7|d, ) represents the probability that two pix-
els separated by an interpixel distance d and orientation
@ have intensities ¢ and j. An estimate of the con-
ditional probability density function, c(3, j|d, 8), is re-
ferred to as the gray-level co-occurrance matrix (GLCM)
or as the spatial gray-level dependence matrix (SGLDM).
SGLDM has been most widely used for classification
of textures (refs. 19-20 and 22-24). SGLDM can be
obtained by computing the two-dimensional histogram
of the frequency of the joint occurrences of two pixels
with a fixed displacement and orientation with respect
to each other having intensities ¢ and j respectively. A
rotationally invariant SGLDM is computed by averag-
ing the individual SGLDM for the angular directions.

For texture classification, either matrix features
or scalar features are used. Many different approaches
are available for texture classification using matrix fea-
tures. Threshold selection based on the SGLDM is de-
scribed in reference 19. In reference 20 the SGLDMs
of four neighbors in the quad-tree are compared with
a threshold for merging or splitting operations. Re-
sults using this technique are also presented in refer-
ence 21. A technique for image segmentation by de-
tecting clusters in the SGLDM, which correspond to
the regions and boundaries in the image, is described
in reference 24. A maximum likelihood texture clas-
sifier using matrix and scalar features is examined in
reference 23. In reference 27 segmentation is done
by thresholding where the thresholds are selected by
projecting the off-diagonal elements of the SGLDM
onto the diagonal and treating the resulting vector as
a histogram. Although, these methods are useful for
segmentation, their storage requirements are high due
to the use of matrix features. For example, 256 x 256
locations are needed to store a matrix feature for an im-
age containing 256 gray-levels. These methods are also
computationally intensive. The storage requirement
and computational speed are the motivations for con-
sidering scalar features for image segmentation. How-
ever, it should be noted that many of the scalar features
derived from the matrix features may not contain all
the important texture information contained in the ma-
trix features (ref. 28). 7

Several scalar features are derivable from the ma-
trix features. For example, 14 scalar texture features
based on the SGLDM are presented in reference 22.



For each of the scalar features their means and vari-
ance, computed by using the SGLDMs corresponding
to the four directions, may be used for texture classi-
fication. Some scalar features derived from SGLDM,
Fourier power spectrum, Gray level difference statis-
tics, and Gray level run length statistics are described
in references 28 and 29. Scalar texture features de-
rived from the SGLDM may also be computed from
sum and difference histograms (ref. 30). Compared to
computing the full SGLDM, sum and difference his-
tograms are fast computationally and require much less
storage. Except for two scalar features, energy and en-
tropy, all the scalar features can be obtained exactly
by using the sum and difference histograms. Many of
the methods such as references 20 and 23 can be used
for classification using scalar features. Several other
methods such as piecewise linear discriminant function
method, min-max decision rule method reference 22,
Fisher linear discriminant technique (ref. 29) can also
be used for classification using scalar features.

Some of the scalar features relate to specific char-
acteristics in the image such as, homogeneity, contrast,
and organized structure. Other features characterize
the complexity. Even though each scalar feature con-
tains textural information, it is hard to identify which
specific textural characteristic is represented by which
feature. In this paper, we examine the classification
ability of each scalar feature, derived from SGLDM,
based on segmentation results of a laboratory image
sequence and a natural scene. In most of the earlier
work both with scalar and matrix features, synthetic
textures, aerial images, and satellite images have been
used. One of the objectives of this paper is to apply the
scalar features to non-orthographic images with slant
illumination. In the next section, we describe segmen-
tation results obtained by thresholding the histograms
of scalar features. These results show which of the
scalar features are successful in classifying the image
pixels into the desired categories.

3 FEATURE SELECTION

In this section, we present image segmentation re-

sults using the following scalar features: energy (f1),

contrast (f2), correlation (f3), standard deviation (f4),
local homogeneity (f5), entropy (f9), difference vari-
ance (f10), difference entropy (fl1), difference aver-
age (f12), and mean (f13). Definitions of the various
scalar features are given in appendix I. The information

content in the scalar features, sum average (f6), sum
variance (f7), and sum entropy (f8), is same as that
in difference average (f12), difference variance (f10),
and difference entropy (f11), respectively. Therefore,
we will not consider 6, f7, and f8 in this study. Scalar
features at every pixel of the image, shown in figure 1,
are computed using a 17 x 17 window centered at the
pixel. The image in figure 1 is the first in a series of
80 images. It consists of different objects like pen-
cils, metal bracket, wooden block on a large optical
table, and a textured wall in the background. If a par-
ticular scalar feature is a discriminant, it should be
possible to threshold the histogram of the scalar fea-
ture into regions that correspond to the desired image
segmentation. To investigate this, histograms for the
scalar features are presented for the whole image and
for rectangular regions shown in figure 2. The legends
W, T, and O in figure 2 correspond to three categories:
wall, table, and objects. The histogram of f1 for the
whole image is shown in figure 3 and for the rectangu-
lar regions from the wall, table, and objects is shown in
figure 4. In figure 4 the legends W, T, and O correspond
to the regions shown in figure 2. The f1 histogram in
figure 3 can be separated into three regions given by
the thresholds f1 < 0.008, 0.008 < f1 < 0.03, and
f1 > 0.03. The histograms in figure 4 suggest that
the image can be segmented into four categories us-
ing the thresholds: f1 < 0.003, 0.003 < f1 < 0.008,

Figure 1. First lab image.



Figure 2. Regions in the first lab image.

0.008 < f1 < 0.03, and f1 > 0.03. The four thresh-
olds result in the image segmentation shown in figure 5.
In this case the lowest and the highest thresholds corre-
spond to the object category. Image regions classified
by the highest threshold are shown in white. In the
absence of the truth data in figure 4, the image can
only be segmented into three groups based on the f1
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Figure 3. F1 histogram for the first lab image.
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Figure 4. F1 histograms for the wall, table, and object
regions in the first lab image.

histogram of the whole image shown in figure 3. This
would result in most of the object regions being classi-
fied as table regions. Although f1 feature can be used

Figure 5. First lab image segmentation using f1
histogram.



for classifying the image in figure 1 into three cate-
gories, it is more suitable for a binary classification
into wall and not-wall categories.

The f2 histogram for the whole image is shown in
figure 6 and the histograms for the wall, table, and ob-
jects categories are shown in figure 7. The histograms
in figures 6 and 7 suggest the segmentation thresholds:
f2<4,4< f2 <85, and f2 > 85. Image segmenta-
tion with these thresholds is shown in figure 8. From
the segmentation in figure 8, it may be seen that 2
correctly segments the image into the wall, table, and
object categories.

Figure 9 shows the {3 histogram for the whole im-
age. The f3 histograms for the wall, table, and object
categories are presented in figure 10. From the his-
tograms in figure 10, it may be seen that the wall and
table categories are not separable. The three thresholds
which partition the histogram in figure 9 are f3 < 0.5,
0.5 < f3 < 0.95, and f3 > 0.95. This results in the
segmentation shown in figure 11. From the segmen-
tation in figure 11, it may be seen that {3 is useful
for binary segmentation into object and not-object cat-
egories. The first threshold results in few pixels close
to the right bottom corner (shown in white) being clas-
sified into a separate set.

The f4 histogram for the whole image is shown
in figure 12 and the wall, table, and object histograms
are given in figure 13. These histograms suggest four
thresholds: f4 < 1,1 < f4 < 4.5, 4.5 < f4 < 186,

1

..................................................................

o.e
|

Normalized Frequency
O.4

a.2

.Q

100 180 gOO
f2

Figure 6. F2 histogram for the first lab image.
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Figure 7. F2 histograms for the wall, table, and object
regions in the first lab image.

and f4 > 16. The segmented image corresponding to
the four thresholds is given in figure 14. The segmen-
tation in figure 14 is very similar to that in figure 8.

Figure 8. First lab image segmentation using f2
histogram.
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Figure 9. F3 histogram for the first lab image.

The first threshold results in some of the object pix-
els (shown in white) being classified into a different
category.

In the manner described above, four thresholds
obtained by the f5 histograms, in figures 15 and 16,
result in the image segmentation in figure 17. The f5
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Figure 10. F3 histograms for the wall, table, and object
regions in the first lab image.
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Figure 11. First lab image segmentation using {3
histogram.

histogram for the whole image is shown in figure 15.
The f5 histograms corresponding to the wall, table, and
object regions are shown in figure 16. Segmentation
thresholds obtained from these histograms are f5 <
02,02< f5<044,044 < f5<0.64, and f5 >
0.64.
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Figure 12. F4 histogram for the first lab image.
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Figure 13. F4 histograms for the wall, table, and object
regions in the first lab image.

The white regions in figure 17 correspond to the
first threshold. The segmentation in figure 17 shows
that f5 is useful for binary classification into wall and
not-wall categories.

Figure 14. First lab image segmentation using f4
histogram.
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Figure 15. F5 histogram for the first lab image.
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Histogram using {9 for the whole image is shown
in figure 18. The f9 histograms for the wall, table,
and object categories are shown in figure 19. Based
on the histograms, the following thresholds, f9 < 1.6,
1.6 < f9<22,22< f9<3, and f9 > 3, result in
the segmentation in figure 20. In figure 20, the white
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Figure 16. FS5 histograms for the wall, table, and object
regions in the first lab image.



Figure 17. First lab image segmentation using f5
histogram.

regions correspond to the first threshold. From the
segmentation results it may be seen that most of the
wall, table, and object pixels are classified correctly by
the f9 feature.

In figure 21 the f10 histogram for the whole image
is given, and in figure 22 the f10 histograms for the
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Figure 18. F9 Histdgram for the first lab image.
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Figure 19. F9 histograms for the wall, table, and object
regions in the first lab image.

wall, table, and objects are given. The segmentation
resulting from the histogram thresholds, f10 < 0.6,
06 < f10 < 1.3, 1.3 £ f10 < 6, and f10 > 6, is
given in figure 23. The segmentation result in figure 23

Figure 20. First lab image segmentation using f9
histogram.
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Figure 21. F10 histogram for the first lab image.

is similar to that in figure 14. Image pixels classified
by the first threshold are shown in white.

Thresholds derived from the f11 histograms pre-
sented in figures 24 and 25 are f11 < 0.5, 0.5 <
f11 < 0.7, 0.7 £ f11 < 1, and f11 > 1. Here, the

O.4 c.e 0.8 1

Normalized Frequenocy

o.2

-a

-8 o L] 1ie i8 24 ao
£10

Figure 22. F10 histograms for the wall, table, and
object regions in the first lab image.

Figure 23. First lab image segmentation using f10
histogram.

f11 histogram for the complete image is shown in fig-
ure 24 and the wall, table, and object histograms are
shown in figure 25. Based on the f11 thresholds, the
image segmentation is presented in figure 26. Regions
shown in white in figure 26 correspond to the first
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Figure 24. F11 histogram for the first lab image.
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Figure 25. F11 histograms for the wall, table, and
object regions in the first lab image.

threshold. The segmentation result is very similar to
that in figure 20.

The f12 histogram for the whole image in fig-
ure 27 and the histograms for wall, table, and ob-
ject categories in figure 28, result in the thresholds

Figure 26. First lab image segmentation using fl1
histogram.

10

f12 < 08,08 < f12 < 1.5, 1.5 £ f12 < 3.8, and
f12 > 3.8. These thresholds lead to the segmenta-
tion in figure 29. This segmentation result is similar
to those in figures 14 and 23. The white regions in
figure 29 correspond to the lowest threshold.

Histograms using f13 for the whole image is given
in figure 30. Similar histograms for wall, table, and
object regions are given in figure 31. The following
thresholds, f13 < 3§, 38 < f13 « 110, and f13 >
110, partition the image into three groups shown in
figure 32. The first threshold corresponds to the white
region in figure 32. The segmentation in figure 32
suggests that f13 can partition the image into object
and non-object categories. It may be seen that parts of
the table are classified as objects due to the fact that
f13 is directly effected by the scene illumination.

In summary, the following may be said regarding
the classification performance of the 10 scalar features
examined on the image in figure 1: fl, f3, and {5 are
useful for binary segmentation; {2, f4, f9, f10, f11, and
f12 are useful for segmentation into the desired cate-
gories. The features f4, £10, and f12 result in similar
segmentations. Also, f9 and f11 result in similar seg-
mentations. The scalar feature f13 is tone dependent
and therefore, may not be very useful for images with
gradual tonal variation caused by illumination.

To verify that the scalar features found to be good
discriminants for the laboratory image in figure 1 are
also good discriminants for other images, we consider
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Figure 27. F12 histogram for the first lab image.



2 °
Lol Rl

ne =

be oe

-] d

0 ]

-] 3

be Pe

No Lo

A I

L] k]

0 0

N+ N

L) a

~ =]

o d

f [:]

S "

0« O

Zg Zg
] ° ; : : ’
e' °' ll'l]IlllllI'lllIIIII|I||I|||'

] a0 120 180 240 300

Figure 28. F12 histograms for the wall, table, and Figure 30. F13 histogram for the first lab image.
object regions in the first lab image.

Marietta plant in Denver. The details of the image ac-
a sequence of 30 images acquired by the Autonomous  quisition method and decription of the motion data as-
Land Vehicle (ALV) in the area surrounding the Martin  sociated with the images are available from the Univer-
sity of Massachussetts (UMASS) at Ahmerst (ref. 31).
Thresholds were obtained for the histograms of scalar
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Figure 31. FI13 histograms for the wall, table, and

object regions in the first lab image.
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Figure 32. First lab image segmentation using f13
histogram.

features computed on the UMASS image shown in fig-
ure 33. The thresholds obtained for the various scalar
features are summarized in table 1. Here, the labels M,
G, and S represent three categories namely, mountain,
ground, and sky. From the table it may be seen that
f1, f4, £5, 19, 10, f11, and f12 result in a meaningful

Figure 33. UMASS Image.

Table 1. Thresholds for scalar feaiures (UMASS
image) '

Features M G S
f1 0-0.001 0.001-0.005 0.005-0.2
2 70-300 0-70 0-70
300-15236 300-15236
3 0.6-1.0 0.6-1.0 0-0.6
f4 10-23 5-10 0-5
23-126
5 0-0.2 0.2-0.28 0.28-0.38
0.38-1
f9 3.1-3.6 0-1.8 1.8-24
2.4-3.1
3.6-4
f10 4-10 2.2-4 0-2.2
10-106
fi1 1.2-1.5 0.9-1.2 0-0.9
1.5-1.8
f12 6-11.5 3-6 0-3
11.5-65
f13 60-100 0-60 0-60
100-255 100-255

segmentation of the image in figure 33 into the moun-
tain, ground, and sky categories. The feature f2 sep-
arates mountain from not-mountain, f3 separates sky
from not-sky, and f13 separates mountain from not-
mountain.

The segmentation resulting from thresholding the
histogram of f9 feature is shown in figure 34. This
result is representative of the segmentations obtained
by using fl1, 4, f5, {9, f10, f11, and f12. Binary seg-
mentation obtained by using f2 and f3 are shown in
figures 35 and 36. .

The set of scalar features which result in an ac-
ceptable segmentation of both, the image in figure 1
and figure 33 are f4, 19, f10, f11, and f12. The experi-
ence with the two images, used in this paper, indicates
that it may be possible to segment other images using



Figure 34. UMASS image segmentation using f9
histogram.

these features individually. So far we have not exam-
ined the classification achievable by using several fea-
tures together. It is quite possible that several features
together may improve the segmentation. We explore
this idea with a neural network, described later. In the

Figure 35. UMASS image segmentation using {2
histogram.

Figure 36. UMASS image segmentation using f3
histogram.

next section we describe a neural network approach
(ref. 32) for supervised classification using single and
multiple scalar features.

4 SEGMENTATION WITH NEURAL
NETWORKS

In the previous section we have established that
the scalar features that show most promise for image
segmentation are 4, 9, f10, f11, and f12. These five
features may be used individually or together to train
a multilayer neural net (NN) using back propagation
(ref. 32). Figure 37 shows an example of a generic
two layer feed-forward NN. As shown in the figure,
the input nodes are connected to the nodes in the hid-
den layer via weights, biases, summing junctions, and
sigmoids. The nodes in the hidden layer are also con-
nected to the output nodes in a similar way.

In this section we will first illustrate NN training
and classification with a single scalar feature and then
with five scalar features. The reason for using a single
feature is that some of the results are easier to relate
to the thresholds obtained from the histograms of the
scalar features, discussed earlier, and to validate that
the chosen scalar features are texture discriminants.
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Figure 37. A two layer feed-forward neural network.

4.1 Training with Single Inputs

A feed-forward multilayer NN with one node in
the input layer, four nodes in the hidden layer and three
nodes in the output layer was used for classification.
The NN was trained with f9 using back propagation.
For training and NN performance evaluation, several
rectangular regions from the wall, table, and objects
were chosen. These regions are shown in figure 2. In
the figure, the labels W, T, and O correspond to wall,
table, and objects. From each of these regions 80 pix-
els were randomly chosen for training of the NN. The
performance of the trained NN for the training samples
is summarized in table 2. The legends W, T, O, and U

Table 2. Training performace using f9 for the first lab
image

W T O U
W 80 ) -
. T 77 3
o) 80

represent wall, table, objects, and unknown. The table
shows that all the wall and the object samples were
classified correctly. Out of 80 table samples, 77 were
classified correctly and three samples could not be clas-
sified at all. The U (unknown category) is that in which
all three outputs of the NN were below a threshold of
0.6. The three NN outputs for the 240 pixels (80 from
wall, 80 from table, and 80 from objects) are shown
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in figure 38, It may be noted that for each pixel all
three outputs have a value and therefore, each curve
consists of 240 points. If a classification threshold of
0.6 is chosen, the thresholds on f9 obtained from fig-
ure 38 are f9<1.6,1.6< f9<22,22< f9<3.0,
and f9 > 3.0. It may be seen that these thresholds
are same as those which partition the f9 histogram in
figure 18.

The convergence characteristics of the NN are
shown in figure 39. The 23 weights of the NN con-
verged in 632 cycles. Figure 39 shows the error, E,
and the probability of correct classification, PCC, as a
function of a number of cycles. It may be noted that E
is a feature of the fit error and not classification error.
PCC is defined as the ratio of the number of samples
correctly classified to the number of samples input to
NN.

For evaluation of the performance of the trained
NN for all samples within the rectangular regions, shown
in figure 2, the f9 values for each pixel in the image
in figure 1, were input to the trained NN for classifi-
cation into wall, table, object, or unknown categories.
The resulting segmentation is shown in figure 40. The
white pixels in figure 40 correspond to the unknown
category. It is interesting to note that the white pixels
are usually along the edges separating two categories.
The segmentation result presented here is very simi-
lar to that shown in figure 20 except that many of the
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Figure 38. Outputs of NN using f9 for the first lab

image.
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Figure 39. Convergence of NN using f9 for the first
lab image.

regions shown in white in figure 20 are classified as
objects. The f9 values of these regions are between 0
and 1.6.

Figure 40. First lab image segmentation with NN using
f9. .

The NN performance for all the pixels in the
rectangular regions in figure 2 is summarized in ta-
ble 3. The rectangular regions in figure 2 contain
92615 wall pixels, 27708 table pixels, and 8456 ob-
ject pixels. From the table it may be seen that 98% of

Table 3. Correct classification using f9 for all pixels
of the first lab image

\' T O U
w 90817 1200 195 403
T 2071 24152 335 1150
O 656 1923 5364 513

the wall pixels, 87.2% of the table pixels and 63.4%
of the object pixels were classified correctly.

4.2 Generalization

To evaluate the ability of the NN to classify pixels
of another image in the sequence, the f9 value of each
pixel in the 80th image was input to the trained NN.
The resulting segmentation is shown in figure 41. By
comparing figure 41 to figure 40, it may be seen that the
NN trained on the first image results in a meaningful
segmentation of the 80th image in the sequence. This

Figure 41. 80th lab image segmentation with NN using
f9.
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example illustrates the ability of the NN, using scalar
texture features, to generalize to other images in the
sequence. As the camera is brought closer to scene,
the texture properties of the objects in the scene may
change and therefore, the NN will have to be re-trained
beyond a certain number of images.

4.3 Performance with Single Inputs

As described above for f9, NNs with one node in
the input layer, four nodes in the hidden layer and three
nodes in the output layer were trained with f4, f10, f11,
and f12 to classify every pixel of the image in figure 1
as wall, table, or object pixel. The performance of the
NNs for the rectangular regions in figure 2 is sum-
marized in table 4. Table 4 shows that classification

Table 4. Classification of first lab image regions using
different scalar features

Features w T O
f4 97.4% 71% 71.2%
9 98% 87.2% 63.4%
f10 98.3% 89.8% 75.4%
fi1 97.8% 79.5% 55.6%
f12 99% 56.9% 70.5%

performance with f10 is better than with f4, 9, fl11,
and f12 for the image in figure 1. All the features are
good for classification of wall pixels. The scalar fea-
tures f11 and f12 are not good discriminants for object
and table pixels, respectively. The ability of differ-
ent scalar features to separate the various categories in
an image varies as shown in table 4 therefore, it may
be possible to use several scalar features together to
achieve a better image segmentation. We explore this
idea next.

4.4 Training with Multiple Inputs

~ A NN with five nodes in the input layer, four
nodes in the hidden layer, and three nodes in the out-
put layer was trained with the normalized values of
f4, 9, f10, f11, and f12 using back propagation for

classification of the pixels in figure 1 into wall, table, -

and object pixels. For normalization, the value of the
scalar feature at every pixel in the image was divided
by the maximum value of that scalar feature in the
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image. This makes the NN unbiased to a particular
scalar feature. To train the NN, 80 samples from the
wall, 80 samples from the table, and 80 samples from
the objects were randomly chosen from the rectangular
regions in figure 2. The 39 weights of the NN con-
verged in 209 cycles. The convergence characteristics
of the NN are shown in figure 42. In figure 42, E
is the fit error, and PCC is the probability of correct
classification.

For performance evaluation of the trained NN for
pixels in figure 2, f4, {9, 10, f11, and f12 values for
each pixel in figure 1 were input to the trained NN
for classification into wall, table, object, or unknown
categories. The resulting segmentation is shown in
figure 43. For the rectangular regions in figure 2, the
segmentation in figure 43 shows that 98.3% of the wall
pixels, 89.9% of the table pixels, and 93.3% of the
object pixels were classified correctly. On comparing
these with those in table 4, it may be seen that the
NN using the five scalar features generally performs
better than the NNs using a single scalar feature. Most
of the improvement results from increased accuracy in
classifying object pixels.

I f
[« 50 100 160 200 200
No. of Cycles

s T i

Figure 42. Convergence of NN using f4, {9, f10, f11,
and f12 for the first lab image.



Figure 43. First lab image segmentation with NN using
f4, 19, 10, f11, and f12.

4.5 Generalization with Multiple Inputs

Segmentation result of the 80th image with the
NN trained on the first image is shown in figure 44.
It is interesting to see that the wire is classified as an

Figure 44. 80th lab image segmentation with NN using
f4, 19, f10, f11, and f12.

object in this image compared to it being classified as
table in figure 41. By comparing figure 44 to figure 41,
it can be said that the classification in figure 44 is
superior to that in figure 41.

4.6 Single Input Training for UMASS Image

In order to examine if the five scalar features dis-
cussed above would work for other images, NNs were
trained using a single scalar feature and the five fea-
tures together to classify regions in the image in fig-
ure 33 as mountain, ground, and sky regions. For indi-
vidual scalar features, NNs with one node in the input
layer, four nodes in the hidden layer, and three nodes
in the output layer were used. For training, value of
the scalar features for 120 points from the mountain,
120 points from the ground, and 120 points from the
sky were used. The performance of the NNs with dif-
ferent scalar features was evaluated on how many of
the 14441 mountain pixels, 55524 ground pixels, and
99376 sky pixels were classified correctly. Both for
training and for performance evaluation, pixels were
chosen from the rectangular regions with legends S,
M, and G, shown in figure 45. In this figure, regions
from the sky, mountain, and the ground are marked
with labels S, M, and G, respectively. Table 5 sum-
marizes the results for the five scalar features. From

Figure 45. Sky, mountain, and ground regions in the
UMASS image.



Table 5. Classification of UMASS image regions using
different scalar features

Feature M G S
f4 91.5% 67.5% 87.1%
9 96.2% 66% 86.4%
f10 97% 68.1% 89.1%
f11 98.1% 64.4% 89.6%
f12 99% 65% 90.6%

the table it may be seen that the five scalar features
perform similarly. The performace of f12 is somewhat
better than others.

4.7 Multiple Input Training for UMASS Image

A NN with five nodes in the input layer, four
nodes in the hidden layer, and three nodes in the out-
put layer was trained on the normalized values of f4,
f9, f10, f11, and f12 using back propagation to classify
every pixel of the image in figure 33 into mountain,
ground, or sky pixel. The 39 weights of this NN con-
verged in 700 cycles. The convergence characteristics
of the NN is shown in figure 46. The converged NN
classified 98.1% of the 14441 mountain pixels, 89.1%
of the 55524 ground pixels, and 89.4% of the 99376
sky pixels. By comparing these numbers to those in

T ' UL ; LI I S B R [ T T 1
[«] 200 400 800 aco 1000
No. of Cycles

Figure 46. Convergence of NN using f4, {9, f10, f11,
and f12 for the UMASS image.
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table 4, it may be seen that classification of the ground
pixels improves considerably. The classification of the
mountain and sky pixels is comparable to that achieved
by a single scalar feature. The segmentation achieved
by the classification of every pixel in figure 33 by the
NN is shown in figure 47.

4.8 Performance with Discarded Features

So far we have not considered the other five scalar
features namely, f1, 2, f3, f5, and f13, together. Dur-
ing the feature selection process we had discarded these
scalar features based on their inability to segment the
images in figure 1 and figure 33 into the desired re-
gions. To evaluate if they are useful together, a NN
with five nodes in the input layer, four nodes in the
hidden layer, and three nodes in the output layer was
trained on the normalized values of fl, f2, 3, {5, and
f13 using back propagation to classify every pixel of
the image in figure 1 as wall, table, or object pixel.
The 39 weights of this NN converged in 435 cycles.
The convergence characteristics of the NN is shown
in figure 48 and the resulting segmentation is shown
in figure 49. The trained NN classified 98% of the
wall pixels, 90% of the table pixels, and 99.6% of the
object pixels correctly. The classification performance

Figure 47. UMASS image segmentation with NN us-
ing f4, f9, f10, f11, and f12.
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Figure 48. Convergence of NN using f1, {2, 3, f5,
and f13 for the first lab image.

is comparable to that achieved by using the scalar fea-
tures f4, {9, f10, f11, and f12 together where, 98.3% of
the wall pixels, 89.9% of the table pixels, and 93.3%
of the object pixels were correctly classified. The clas-
sification performance on the 80th image is shown in

Figure 49. First lab image segmentation with NN using
f1, £2, 3, 5, and f13.

Figure 50. 80th lab image segmentation with NN using
f1, £2, £3, £5, and f13.

figure 50. This result is also comparable to that shown
in figure 44,

The same NN was trained using the f1, 2, f3, {5,
and f13 values corresponding to the sample pixels in
figure 33. It took 346 cycles to train the NN. The con-
vergence characteristic and the segmentation are shown
in figures 51 and 52. In this case 95% of the mountain
pixels, 97% of the ground pixels, and 65% of the sky
pixels were classified correctly. This is not as good
as the correct classification of 98.1% of the mountain
pixels, 89.1% of the ground pixels, and 89.4% of the
sky pixels, achieved by using f4, {9, f10, f11, and {12
together.

In summary, NNs using the five scalar features f4,
9, f10, f11, and f12 together and f1, f2, f3, {5, and f13
together were trainable for successful classification of
the pixels of the images in figures 1 and 33. In both
the cases, NNs using the five scalar features together
did a better classification when compared to the NNs
using a single scalar feature.
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e 5 CONCLUSIONS

Image segmentations using thresholds derived from
histograms of the ten scalar features were described for
a laboratory image and an outdoor scene. These scalar
features are derived from the spatial gray-level depen-
dence matrix. It was shown that five of these scalar
features, namely: variance, entropy, difference vari-
ance, difference entropy, and difference average, are
individually good descriptors of texture. A neural net
was then trained using back propagation with a single
scalar feature as input. The performance of the neural
network on the training samples and the convergence
characteristics were discussed. The trained network
was then used for classification of pixels of the whole

: : : image. The resulting segmentation result was shown
° ' ! ' l ' 1 ' and the neural net classification performance was eval-
° No. of Cyoles . oo uated. The same neural net was used for classification
of pixels of another image in the sequence. By this
example, the ability of the trained neural net, using
scalar texture features, to generalize to images in the
sequence was shown. This further verified that the
five scalar features, listed above, are useful for texture
segmentation. A neural net was later trained with the
five scalar features together. Its convergence charac-
teristics were shown. The trained network was then
used for classification of pixels of the whole image.
It was shown that the classification results improved
considerably using five features together as opposed to
using each feature independently. The same network
was trained on the lab and outdoor images using the
five scalar features, energy, contrast, correlation, and
inverse difference moment and mean, which were not
found to be useful individual descriptors of texture.
In this case also the convergence characteristics were
shown for both the images. Generalization to another
image in the sequence was also examnined using these
features. It was shown that these features together are
able to correctly classify the image into desired re-
gions. The neural network approach to segmentation
using several texture features shows great promise. In
the future, we will consider methods to adapt the neu-
ral network to improve the generalization. In addition,
we will consider alternate neural network schemes.

Figure 51. Convergence of NN using f1, f2, 3, f5,
and f13 for the UMASS image.

Figure 52. UMASS image segmentation with NN us-
ing f1, f2, 13, 5, and f13.
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APPENDIX

The texture features used in this paper for classi-
fication are based on the spatial gray-level dependence
matrix (SGLDM) (ref. 22). The use of SGLDM to
compute texture features involves large memory and
computation requirements. For example, 256 x 256
locations are needed to store SGLDM for an image
containing 256 gray-levels. The large dimensionality
of the SGLDM makes them sensitive to the sample size
from which they are estimated. An alternate to the use
of SGLDM is to approximate them by sum and dif-
ference histograms. This is based on the observation
that a joint probability function of two variables can be
approximated by the product of two density functions
of uncorrelated transformed variables (ref. 30). This
enables us to compute most of the texture features de-
scribed in reference 22 by using the sum and difference
histograms.

Let p(%, 7), ps(k) and py(l) be the SGLDM, sum
histogram, and the difference histogram, respectively.
The sum and difference histograms are generated by
computing the sum of gray-levels and the difference
of the gray-levels of every horizontal and vertical pixel
pair in the region of interest. The indices (i, j) for the
SGLDM vary from 0-255 while the indices k, [ for the
sum and difference histogram vary from 0-512 and 0-
255 respectively. Definitions of the 13 texture features
are given below.

1. Energy:

f1=323"Ip(i,5)?
17
~ 3 [ps (k)] 3 lpa(D)?
k l

2. Contrast:

2=5"n2%"3"p6,4)
n 7 J
=>"1py(l)]
l

Here, |i—j| = n where, n varies from 0-255. This is a
weighted sum of the diagonals of the SGLDM where,
n? is the weight.

3. Correlation:

_ %S5m0, 9) = £13°

I 72
- %[zk:(k — 2£13)%ps (k) — 2; Zpa(l)]
_f1-12
fr1+ 12
4. Variance:

=3 ;( ~ £13)°p(i, )
= 122219 pu(8) + 3 Ppall)
= U7+ 2)
5. Inverse Difference Moment:
ﬁ=;;rmgﬁmw
= ral)

6. Sum Average:

f6=7 kps(k)
k

= 2f13

7. Sum Varance:
£7="3"(k— 76)%ps(k)

k

8. Sum Entropy:

f8=- Zps(k) log[ps (k)]
k
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9. Entropy: 12. Difference Average:

F9==>"3"p(i,7)log[p(i, )] - f12=> "Ip4(D)
i 7 {

~ = X pa(oelpa(k)] = 3 palt) () 5. Mo
= f8+ f11

1
f13==5 kps(k
10. Difference Variance: 2 ; s(k)

= %f6
F10="(1 - f12)%pa())
!

11. Difference Entropy:

f11 ==Y "pa(D) loglpa(})]
{
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the network approach to subsequent images in the sequence is examined. It is shown that the use of multiple scalar
fcatures as input to the ncural nctwork result in a superior segmentation when compared with a single scalar feature.
It is also shown that the scalar features, which are not useful individually, result in a good segmentation when used
together. The methodology is applicd to both indoor and outdoor images.
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